Thrift specification -
Remote Procedure Call

Erik van Oosten <e. vanoost en@rons. nl >

Revision History

Revision 1.2 2021-10-21 EVO

Added "no maintenance intended" notice.

Table of Contents

1. NO mMainNtenanCe INLENAEAocuiiiiiiiieee et st a et b et s aeenes 2
P22 1 011 0o [0 Tox o o PSSP 2
3. Thrift Remote Procedure Call Message eXChanQecvecieiieiiieeiie ettt 2
I 1V s o SRR PSPPSRIS 3
G I (< (1S S L o SRS 4
G TR O (= 0 0] 05 IR [(o R 4
4. Thrift Binary protoCOl €NCOOINGcueiiuieiieiiie ettt s e b e saaeesbeesnreenreesnneens 5
v g1 =0 = = 07 o (] oo I USRS 5
2y = o TW = 0o (] o PR TSSORN 6
A Y1 VA = oo (1 oo OSSPSR 6
S L] o = oo |1 oo PSSP 6
VAR ST D To 18 o F=3= g oxo o] o o SRS 6
4.6. BOOIEAN ENCOUINGeeveiiiieiiie ettt st e b e s s e et e e s aeeeabeesaeeebeesaeeeaeeaseeenneas 6
VR V=52 o T oo o [o OSSR 6
VS S o = 01 o (] oo OSSR 7
4.9, LISE @NA SEL ..ottt ettt b et et b e a e bt nhe e b e e e nneene s 8
(O o TSR 9
5. Thrift compact ProtoCOl ENCOUINGccveeiviiiie it erae e re e e e ereas 9
3 I g (=0 g = oo 1 oo [P SRS 9
o =0 = o T (1 oo USSR 10
5.3, BiNary €NCOOINGcccuiiiiieiiie ittt st e st et e et e e b e e e see e beessaeebeesneeeseesnneans 10
S (T aTo = aTere o |1 o OSSPSR 10
5.5. DOUBIE ©NCOUINGveeiieiiie ittt st e st e b e s s e e teesreeebeesneeeseennneenns 10
SN OI = ToTo 1= g 1= oo o [o o RSSO 10
V=== o SN = (oo (] oo TSRS 11
o3RS TS {1 Tox = o (oo (1 oo USSR 11
5.9, LIS NG SEL ... bbb e b e e e a e e re e 12
o300 (O Y= o TSRO RRURTRN 13
6. Comparing binary and cOmMpPact ProtOCOIceeiiieiieiiicsie e eeree s 14
7. Framed vS. unframed tranSPONoocuieiie ittt st e b e e snneeree s 14
8. BNF notation used in thiS dOCUMENTcciiiiiiiiieee e e e 15

The missing specification.

Thrift specification -
Remote Procedure Call

1. No maintenance intended

This document has been adopted by the Thrift project at https://github.com/apache/thrift/tree/master/
doc/specs and is maintained there by the Thrift community. This copy will not receive any further
updates.

Questions are best asked on the Thrift developers mailing list.

2. Introduction

Thrift is a RPC mechanism that easily blends in with your code. It has a wonderful transport protocol
that stays backward and forward compatible without the security pitfalls brought by seriapalooza
[https://www.contrastsecurity.com/security-influencers/serialization-must-die-act-1-kryo].

This document specifies the so far undocumented thrift RPC message exchange and the wire encoding
of those messages in the binary protocol and the more modern compact protocol. Then the binary
protocol and compact protocol are compared. Finally it describes the framed vs. unframed transport.

For background on Thrift see the Thrift white paper (pdf) [https.//thrift.apache.org/static/files/
thrift-20070401.pdf].

This document isfor Thrift implementers. Thrift users should read the thrift documentation [https://
thrift.apache.org/] and the missing thrift guide [https://diwakergupta.github.io/thrift-missing-guide/].

The information here is based on research in the Javaimplementation in the Apache thrift library
(version 0.9.1 and 0.9.3) and THRIFT-110 A more compact format [https.//issues.apache.org/jira/
browse/THRIFT-110]. Other implementation however, should behave the same.

Copyright © 2016 Erik van Oosten

Thiswork is licensed under the Creative Commons Attribution-ShareAlike 4.0
International License [http://creativecommons.org/licenses/by-sa/4.0/].

Feedback and contributions to this specifications are very welcome. Y ou can find the source code
[https://github.com/erikvanoosten/thrift-missing-specification] on GitHub.

There is also a PDF [http://erikvanoosten.github.io/thrift-missing-specification/thrift-rpc-missing-
specification.pdf] version of this document.

3. Thrift Remote Procedure Call Message
exchange

Both the binary protocol and the compact protocol assume atransport layer that exposes a bi-
directional byte stream, for example a TCP socket. Both use the following exchange:

1. o Client sends aMessage (typeCal I or Oneway). The TMessage contains some metadata and the
name of the method to invoke.

2. o Client sends method arguments (a struct defined by the generate code).

https://github.com/apache/thrift/tree/master/doc/specs
https://github.com/apache/thrift/tree/master/doc/specs
https://www.contrastsecurity.com/security-influencers/serialization-must-die-act-1-kryo
https://www.contrastsecurity.com/security-influencers/serialization-must-die-act-1-kryo
https://thrift.apache.org/static/files/thrift-20070401.pdf
https://thrift.apache.org/static/files/thrift-20070401.pdf
https://thrift.apache.org/static/files/thrift-20070401.pdf
https://thrift.apache.org/
https://thrift.apache.org/
https://thrift.apache.org/
https://diwakergupta.github.io/thrift-missing-guide/
https://diwakergupta.github.io/thrift-missing-guide/
https://issues.apache.org/jira/browse/THRIFT-110
https://issues.apache.org/jira/browse/THRIFT-110
https://issues.apache.org/jira/browse/THRIFT-110
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://github.com/erikvanoosten/thrift-missing-specification
https://github.com/erikvanoosten/thrift-missing-specification
http://erikvanoosten.github.io/thrift-missing-specification/thrift-rpc-missing-specification.pdf
http://erikvanoosten.github.io/thrift-missing-specification/thrift-rpc-missing-specification.pdf
http://erikvanoosten.github.io/thrift-missing-specification/thrift-rpc-missing-specification.pdf

Thrift specification -
Remote Procedure Call

3. o Server sends aMessage (typeRepl y Or Except i on) to start the response.
4. o Server sends astruct containing the method result or exception.

The pattern is a simple half duplex protocol where the parties alternate in sending a Message followed
by a struct. What these are is described below.

Although the standard Apache Thrift Java clients do not support pipelining (sending multiple requests
without waiting for an response), the standard A pache Thrift Java servers do support it.

3.1. Message

A message contains.

* Name, astring.

» Message type, a message types, one of Cal | , Repl y, Except i on and Oneway.
* Sequenceid, asigned i32 integer.

The sequence id isasimple message id assigned by the client. The server will use the same sequence
id in the message of the response. The client uses this number to detect out of order responses. Each
client has an 132 field which isincreased for each message. The sequence id simply wraps around
when it overflows,

The name indicates the service method name to invoke. The server copies the name in the response
message.

When the multiplexed protocol is used, the name contains the service name, acolon (:) and the
method name. The multiplexed protocol is not compatible with other protocols.

The message type indicates what kind of message is sent. Clients send requests with messages of
typeCal I or Oneway (step 1 in the protocol exchange). Servers send responses with messages of type
Excepti on Or Repl y (step 3).

Type Repl y is used when the service method completes normally. That is, it returns avalue or it
throws one of the exceptions defined in the Thrift IDL file.

Type Except i on isused for other exceptions. That is. when the service method throws an exception
that is not declared in the Thrift IDL file, or some other part of the Thrift stack throws an exception.
For example when the server could not encode or decode a message or struct.

In the Javaimplementation (0.9.3) there is different behavior for the synchronous and asynchronous
server. Inthe async server all exceptions are send asa TAppl i cat i onExcept i on (See Response
struct below). In the synchronous Javaimplementation only (undeclared) exceptions that extend
TExcept i on aresend asaTAppl i cati onExcept i on. Unchecked exceptions lead to an immediate
close of the connection.

Type neway isonly used starting from Apache Thrift 0.9.3. Earlier versions do not send messages of
type Oneway, even for service methods defined with the oneway modifier.

When client sends a request with type neway, the server must not send a response (steps 3 and 4 are
skipped). Note that the Thrift IDL enforces areturn type of voi d and does not allow exceptions for
oneway Services.

Thrift specification -
Remote Procedure Call

3.2. Request struct

The struct that follows the message of type Cal I or Oneway contains the arguments of the service
method. The argument ids correspond to the field ids. The name of the struct is the name of the
method with _ar gs appended. For methods without arguments an struct is sent without fields.

3.3. Response struct

The struct that follows the message of type Repl y are structs in which exactly 1 of the following fields
is encoded:

» A field with name success and id 0, used in case the method completed normally.

» An exception field, name and id are as defined in the t hr ows clause in the Thrift IDL’ s service
method definition.

When the message is of type Except i on the struct is encoded asif it was declared by the following
IDL:

exception TApplicationException {
1: string nessage,
2: 132 type

}

The following exception ““type s are defined in the java implementation (0.9.3):
0, unknown

used in case the type from the peer is unknown.
1, unknown method

used in case the method requested by the client is unknown by the server.
2, invalid message type

no usage was found.
3, wrong method name

no usage was found.
4, bad sequence id

used internally by the client to indicate a wrong sequenceid in the response.
5, missing result

used internally by the client to indicate a response without any field (result nor exception).
6, internal error

used when the server throws an exception that is not declared in the Thrift IDL file.

Thrift specification -
Remote Procedure Call

7, protocol error

used when something goes wrong during decoding. For example when alist istoo long or a
required field ismissing.

8, invalid transform

no usage was found.
9, invalid protocol

no usage was found.
10, unsupported client type

no usage was found.

Struct

A struct is asequence of zero or more fields, followed by a stop field. Each field starts with afield
header and is followed by the encoded field value. The encoding can be summarized by the following
BNF:

struct
fiel d-header

(field-header field-value)* stop-field
field-type field-id

Because each field header contains the field-id (as defined by the Thrift IDL file), the fields can be
encoded in any order. Thrift’ s type system is not extensible; you can only encode the primitive types
and structs. Thereforeit is also possible to handle unknown fields while decoding; these are smply
ignored. While decoding, the field type can be used to determine how to decode the field value.

Note that the field name is not encoded so field renamesin the IDL do not affect forward and
backward compatibility.

The default Java implementation (Apache Thrift 0.9.1) has undefined behavior when it tries to decode
afield that has another field-type then what is expected. Theoretically this could be detected at the
cost of some additional checking. Other implementation may perform this check and then either
ignore the field, return a protocol exception, or perform a silent type cast.

A union is encoded exactly the same as a struct with the additional restriction that at most 1 field may
be encoded.

An exception is encoded exactly the same as a struct.

4. Thrift Binary protocol encoding

4.1. Integer encoding

In the binary protocol integers are encoded with the most significant byte first (big endian byte order,
aka network order). Ani 8 needs 1 byte, ani 16 2, ani 32 4 and ani 64 needs 8 bytes.

Thrift specification -
Remote Procedure Call

The CPP version has the option to use the binary protocol with little endian order. Little endian gives
asmall but noticeable performance boost because contemporary CPUs use little endian when storing
integersto RAM.

4.2. Enum encoding

The generated code encodes enums by taking the ordinal value and then encoding that as an 132.

4.3. Binary encoding

Binary is sent asfollows:

Bi nary protocol, binary data, 4+ bytes:

Fomm oo - Fomm oo - Fomm oo - Fomm oo - Fomm oo - + Fomm oo - +
| byte length | bytes

Fomm oo - Fomm oo - Fomm oo - Fomm oo - Fomm oo - + Fomm oo - +
Where:

* byte | ength isthelength of the byte array, a signed 32 bit integer encoded in network (big endian)
order (must be >= 0).

* byt es arethe bytes of the byte array.

Be default the length is limited to 2147483647, however some implementation have the option to
lower the limit.

4.4. String encoding

Strings are first encoded to UTF-8, and then send as binary.

4.5. Double encoding

Values of type doubl e arefirst converted to an i64 according to the |EEE 754 floating-point "double
format" bit layout. Most run-times provide primitives for the conversion. Thei64 is encoded using 8
bytesin big endian order.

Thisis some scala code showing the VM primitives to convert from double to 164 and back:

def doubl eTol 64(d: Doubl e): Long
def i 64ToDoubl e(l: Long): Doubl e

j ava. | ang. Doubl e. doubl eToLongBi t s(d)
j ava. | ang. Doubl e. | ongBi t sToDoubl e(1)

4.6. Boolean encoding

Values of bool type arefirst converted to ani8. Trueis converted to 1, false to 0.

4.7. Message encoding

A Message can be encoded in two different ways, the modern strict encoding, or the nameless old
encoding.

Thrift specification -

Remote Procedure Call
Bi nary protocol Message, strict encoding, 12+ bytes:
[- [- [- [- [- [- [- [- [- +, .+ -
| lvvvvvvyv| vvvvvvvv| unused | 00000mm{ nane | ength | name
[- [- [- [- [- [- [- [- [- +, .+ -
Where:

* vvvvvvvvvvvvvvy istheversion, an unsigned 15 bit number fixed to 1 (in binary: 000 0000 0000
0001). Theleading bitis1.

* unused isanignored byte.

* mmisthe message type, an unsigned 3 bit integer. The 5 leading bits must be 0 as some clients
(checked for javain 0.9.1) take the whole byte.

* nane | engt h isthe byte length of the name field, a signed 32 bit integer encoded in network (big
endian) order (must be >= 0).

* nane isthe method name, a UTF-8 encoded string.

seq i disthesequenceid, asigned 32 bit integer encoded in network (big endian) order.

The second, older encoding (aka non-strict) is:

Bi nary protocol Message, old encoding, 9+ bytes:

Fomm e o - Fomm e o - Fomm e o - Fomm e o - Fomm e o - ETTE: S, Fomm e o - Fomm e o - Fomm e o - +- -
| name length | name | 00000MmM{ seq id
Fomm e o - Fomm e o - Fomm e o - Fomm e o - Fomm e o - ETTE: S, Fomm e o - Fomm e o - Fomm e o - +- -

Where nare | engt h, narme, mm seq i d are as above.

Because nane | engt h must be positive (therefore the first bit is always0), the first bit allows the
receiver to see whether the strict format or the old format is used. Therefore a server and client using
the different variants of the binary protocol can transparently talk with each other. However, when
strict mode is enforced, the old format is rejected.

Message types are encoded with the following values:
e Cal: 1

* Reply: 2

» Exception: 3

* Oneway: 4

4.8. Struct encoding

In the binary protocol field headers and the stop field are encoded as follows:

Bi nary protocol field header and field val ue:

R R R R R SRS +
[tttttttt]| field id | field value
R R R R R SRS +

Thrift specification -
Remote Procedure Call

Bi nary protocol stop field:

Where:

o tttttttt thefield-type, asigned 8 bit integer.

» field idthefield-id, asigned 16 bit integer in big endian order.
* fiel d-val ue the encoded field value.

The following field-types are used:

* bool , encoded as 2

* byt e, encoded as 3

* doubl e, encoded as 4

* i 16, encoded as 6

* i 32, encoded as 8

* i 64, encoded as 10

* string, used for binary and string fields, encoded as 11
* struct, used for structs and union fields, encoded as 12
* map, encoded as 13

e set, encoded as 14

li st, encoded as 15

4.9. List and Set

List and sets are encoded the same: a header indicating the size and the element-type of the elements,
followed by the encoded elements.

Binary protocol list (5+ bytes) and el enents:

Fomm oo - Fomm oo - Fomm oo - Fomm oo - Fomm oo - Fomm oo - +, - m - - - +
[tttttttt| size | elenents

Fomm oo - Fomm oo - Fomm oo - Fomm oo - Fomm oo - Fomm oo - + Fomm oo - +
Where:

e tttttttt isthe element-type, encoded asani8
* size isthesize, encoded as an i32, positive values only

* el ement s the e ement values

Thrift specification -
Remote Procedure Call

The element-type values are the same as field-types. The full list isincluded in the struct section
above.

The maximum list/set sizeis configurable. By default there is no limit (meaning the limit is the
maximum 32 value: 2147483647).

4.10. Map

Maps are encoded with a header indicating the size, the element-type of the keys and the element-type
of the elements, followed by the encoded elements. The encoding follows this BNF:

map ::= Kkey-elenment-type val ue-el enent-type size (key value)*

Bi nary protocol map (6+ bytes) and key val ue pairs:

E E E E E E E E TR SN +
| kkkkkkkk| vvvvvvvv| size | key value pairs

E E E E E E E + E +
Where:

* kkkkkkkk isthe key element-type, encoded asan i8

* vvvvvvvy isthe value element-type, encoded asan i8

* si ze isthe size of the map, encoded as an 132, positive values only
* key val ue pairs arethe encoded keys and values

The element-type values are the same as field-types. The full list isincluded in the struct section
above.

The maximum map size is configurable. By default thereis no limit (meaning the limit isthe
maximum i32 value: 2147483647).

5. Thrift compact protocol encoding

5.1. Integer encoding

The compact protocol uses multiple encodings for integers. the zigzag int, and the var int.

Values of typei 32 and i 64 arefirst transformed to azigzag int. A zigzag int folds positive and
negative numbers into the positive number space. When weread O, 1, 2, 3, 4 or 5 from the wire, this
istrandated to O, -1, 1, -2 or 2 respectively. Here are the (Scala) formulas to convert from i32/i64 to a
zigzag int and back:

def i32ToZigzZag(n: Int): Int = (n << 1) ~ (n >> 31)

def zigzagTolnt32(n: Int): Int (n>>>1) ~ - (n &1)
def i64ToZi gZag(n: Long): Long (n << 1) ~ (n >> 63)
def zigzagTol 64(n: Long): Long (n>>>1) ~ - (n &1)

The zigzag int isthen encoded asavar int. Var intstake 1 to 5 bytes (i32) or 1 to 10 bytes (i64).
The most significant bit of each byte indicates if more bytes follow. The concatenation of the |east

Thrift specification -
Remote Procedure Call

significant 7 bits from each byte form the number, where the first byte has the most significant bits (so
they arein big endian or network order).

Var ints are sometimes used directly inside the compact protocol to represent numbers that are usually
positive.

Toencodeani 16 aszigzag int, it isfirst converted to ani 32 and then encoded as such. The typei 8
simply uses asingle byte asin the binary protocol.

5.2. Enum encoding

The generated code encodes enums by taking the ordinal value and then encoding that just like an i32.

5.3. Binary encoding

Binary is sent asfollows:

Bi nary protocol, binary data, 1+ bytes:

S I S I +
| byte length | bytes

E T S I R +
Where:

* byte | ength isthelength of the byte array, using var int encoding (must be >= 0).
* byt es arethe bytes of the byte array.

Be default the length is limited to 2147483647, however some implementation have the option to
lower the limit.

5.4. String encoding

Strings are first encoded to UTF-8, and then send as binary.

5.5. Double encoding

Values of type doubl e arefirst converted to an 164 according to the IEEE 754 floating-point "double
format" bit layout. Most run-times provide primitives for the conversion. Thei64 is encoded using 8
bytesin big endian order.

Thisis some scala code showing the VM primitives to convert from double to 164 and back:

def doubl eTol 64(d: Doubl e): Long
def i 64ToDoubl e(l: Long): Doubl e

j ava. | ang. Doubl e. doubl eToLongBi t s(d)
j ava. | ang. Doubl e. | ongBi t sToDoubl e(1)

5.6. Boolean encoding

Booleans are encoded differently depending on whether it isafield value (in astruct) or an element
value (in aset, list or map). Field values are encoded directly in the field header. Element values of
type bool are sent asan i8; trueas 1 and false as 0.

10

Thrift specification -
Remote Procedure Call

5.7. Message encoding

A Message on the wire looks as follows:

Conpact protocol Message (4+ bytes):

E E E TR S E TR S E +. ..
| pppppppPp| MMvvvvyv| seq id | nanme length | nane

E E E + E E + E E +
Where:

* pppppppp isthe protocoal id, fixed to 1000 0010 or 0x82.
* mmmis the message type, an unsigned 3 bit integer.
» vvvvv istheversion, an unsigned 5 bit integer, fixed to 00001.

* seq idisthesequenceid, asigned 32 hit integer encoded as avar int.

* name | engt h isthe byte length of the name field, a signed 32 bit integer encoded as avar int (must

be>=0).
* nane isthe method name to invoke, a UTF-8 encoded string.

M essage types are encoded with the following values:

Call: 1

Reply: 2

Exception: 3

Oneway: 4

5.8. Struct encoding

Conpact protocol field header (short form and field val ue:

Fomm e o - Fomm e o - .. - +
| ddddtttt| field val ue |
Fomm e o - Fomm e o - .. - +

Conpact protocol field header (1 to 3 bytes, long form and field val ue:

Fomm e o - Fomm e o - .. - Fomm e o - .. - +
| 00OOtttt| field id | field value
Fomm e o - Fomm e o - .. - Fomm e o - .. - +

Conpact protocol stop field:

Fomm e o - +
| 00000000|
Fomm e o - +
Where:

* dddd isthefield id delta, an unsigned 4 bits integer (strictly positive, e.g. > 0).

11

Thrift specification -
Remote Procedure Call

o tttt isfield-typeid, an unsigned 4 bit integer.

* field idthefieldid, asigned 16 bit integer encoded as zigzag int.

* field-val ue the encoded field value.

Thefield id delta can be computed by current-fiel d-id - previous-field-id,orjustcurrent-
field-idifthisisthefirst of the struct. The short form should be used when the field id deltaisin

therange 1 - 15 (inclusive).

The following field-types/values can be encoded:

e bool withvauetrue, encoded as 1

* bool withvaluef al se, encoded as 2

* byt e, encoded as 3
* i 16, encoded as 4
* 32, encoded as5
* i 64, encoded as6

e doubl e, encoded as 7

* binary, used for binary and string fields, encoded as 8

e |ist,encoded as9
* set, encoded as10

* map, encoded as 11

e struct, used for both structs and union fields, encoded as 12

Note that because there are 2 specific field types for the boolean values, the encoding of a boolean

field value has no length (0 bytes).

5.9. List and Set

List and sets are encoded the same: a header indicating the size and the element-type of the elements,

followed by the encoded elements.

Conpact protocol |ist header

S S S SR

| sssstttt]| elenents

Conpact protocol |ist header

S S S SR

| 1111t ttt| size

(1 byte, short forn) and el enents:

(2+ bytes, long form) and el enents:

ce o I +
| elenents |
ce o S U R +

12

Thrift specification -
Remote Procedure Call

* ssss isthesize, 4 bit unsigned integer, valueso - 14

* tttt isthe element-type, a4 bit unsigned integer

* sizeisthesize avarint (i32), positive values 15 or higher

* el ement s are the encoded elements

The short form should be used when the length isin the range O - 14 (inclusive).
The following element-types are used (note that these are different from the field-types):
* bool , encoded as 2

* byt e, encoded as 3

* doubl e, encoded as 4

* i 16, encoded as 6

* i 32, encoded as8

* i 64, encoded as 10

* string, used for binary and string fields, encoded as 11

* struct, used for structs and union fields, encoded as 12

* map, encoded as 13

* set, encoded as 14

* list,encoded as15

The maximum list/set sizeis configurable. By default there is no limit (meaning the limit is the
maximum 32 value: 2147483647).

5.10. Map

Maps are encoded with a header indicating the size, the type of the keys and the element-type of the
elements, followed by the encoded elements. The encoding follows this BNF:

map

enpt y- map
non- enpt y- map :

enpty-map | non-enpty-map
o
size key-el ement-type val ue-el enent-type (key val ue) +

Conpact protocol nmap header (1 byte, enpty nap):

Conpact protocol nmap header (2+ bytes, non enpty map) and key val ue pairs:

Fomm e - +, e - - Fomm e - Fomm e - +, e - - +
| size | kkkkvvvv| key val ue pairs
Fomm e - + Fomm e - Fomm e - Fomm e - + Fomm e - +

Thrift specification -
Remote Procedure Call

Where:

* sizeisthesize avarint (i32), strictly positive values (size > 0)

* kkkk isthe key element-type, a4 bit unsigned integer

* vvvv isthe value element-type, a4 bit unsigned integer

* key val ue pairs arethe encoded keys and values

The element-types are the same as for lists. The full list isincluded in the List and set section.

The maximum map size is configurable. By default thereis no limit (meaning the limit isthe
maximum i32 value: 2147483647).

6. Comparing binary and compact
protocol

The binary protocol isfairly simple and therefore easy to process. The compact protocol needs less
bytes to send the same data at the cost of additional processing. When bandwidth is a bottleneck, the
compact protocol will be slightly faster. When bandwidth is not a concern there is no advantage.

Compatibility. A server could automatically determine whether a client talks the binary protocol
or the compact protocol by investigating the first byte. If the valueis 1000 0001 or 0000 0000
(assuming a name shorter then £16 MB) it is the binary protocol. When the value is 1000 0010 itis
talking the compact protocol.

/. Framed vs. unframed transport

The first thrift binary wire format was unframed. This means that information is sent out in asingle
stream of bytes. With unframed transport the (generated) processors will read directly from the socket
(though Apache Thrift does try to grab al available bytes from the socket in a buffer when it can).

Later, Thrift introduced the framed transport.

With framed transport the full request and response (the message and the following struct) are first
written to a buffer. Then when the struct is complete (transport method f | ush is hijacked for this), the
length of the buffer iswritten to the socket first, followed by the buffered bytes. The combination is
called aframe. On the receiver side the complete frameisfirst read in abuffer before the messageis
passed to a processor.

The length prefix is a4 byte signed integer, send in network (big endian) order. The following must be
true: 0 ; length 7 16384000 (16M).

Framed transport was introduced to ease the implementation of async processors. An async processor
isonly invoked when all datais received. Unfortunately, framed transport is not ideal for large
messages as the entire frame stays in memory until the message has been processed. In addition, the
javaimplementation merges the incoming data to a single, growing byte array. Every time the byte
array isfull it needs to be copied to anew larger byte array.

14

Thrift specification -
Remote Procedure Call

Framed and unframed transports are not compatible with each other.

8. BNF notation used in this document

The following BNF notation is used:

» aplus + appended to an item represents repetition; the item is repeated 1 or more times

» astar * appended to an item represents optional repetition; the item is repeated O or more times
* apipe| between items represents choice, the first matching item is selected

» parenthesis(and) are used for grouping multiple items

15

	Thrift specification - Remote Procedure Call
	Table of Contents
	1. No maintenance intended
	2. Introduction
	3. Thrift Remote Procedure Call Message exchange
	3.1. Message
	3.2. Request struct
	3.3. Response struct
	Struct

	4. Thrift Binary protocol encoding
	4.1. Integer encoding
	4.2. Enum encoding
	4.3. Binary encoding
	4.4. String encoding
	4.5. Double encoding
	4.6. Boolean encoding
	4.7. Message encoding
	4.8. Struct encoding
	4.9. List and Set
	4.10. Map

	5. Thrift compact protocol encoding
	5.1. Integer encoding
	5.2. Enum encoding
	5.3. Binary encoding
	5.4. String encoding
	5.5. Double encoding
	5.6. Boolean encoding
	5.7. Message encoding
	5.8. Struct encoding
	5.9. List and Set
	5.10. Map

	6. Comparing binary and compact protocol
	7. Framed vs. unframed transport
	8. BNF notation used in this document

